Step of Proof: complete_nat_ind_with_y
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
complete
nat
ind
with
y
:
(
P
,
g
. Y(
f
,
x
.
g
(
x
,
f
)))
(
P
:(
{k}). (
i
:
. (
j
:
i
.
P
(
j
))
P
(
i
))
(
i
:
.
P
(
i
)))
latex
by ((MemberEqCD)
CollapseTHEN (IfLab `subterm`
C
((MemberEqCD)
CollapseTHEN (
C
IfLab `subterm` Id (Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
C
) inil_term)))
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
C
) inil_term)))
latex
C
1
: .....subterm..... T:t1:n
C1:
1.
P
:
{k}
C1:
2.
g
:
i
:
. (
j
:
i
.
P
(
j
))
P
(
i
)
C1:
Y(
f
,
x
.
g
(
x
,
f
))
(
i
:
.
P
(
i
))
C
.
Definitions
x
(
s
)
,
P
Q
,
,
,
x
:
A
.
B
(
x
)
,
t
T
,
P
Q
,
i
j
<
k
,
{
i
..
j
}
Lemmas
le
wf
,
int
seg
wf
,
nat
wf
origin